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Obesity is associated with premature mortality and is 
a serious public health threat that accounts for a large 
proportion of the worldwide non- communicable dis-
ease burden, including type 2 diabetes, cardiovascular 
disease, hypertension and certain cancers1,2. Mechanical 
issues resulting from substantially increased weight, such 
as osteoarthritis and sleep apnoea, also affect people’s  
quality of life3. The impact of obesity on communicable 
disease, in particular viral infection4, has recently been 
highlighted by the discovery that individuals with obe-
sity are at increased risk of hospitalization and severe 
illness from COVID-19 (refs5–7).

On the basis of the latest data from the NCD Risk 
Factor Collaboration, in 2016 almost 2 billion adults 
(39% of the world’s adult population) were estimated 
to be overweight (defined by a body mass index (BMI)  
of ≥25 kg m−2), 671 million (12% of the world’s adult 
population) of whom had obesity (BMI ≥30 kg m−2) — a  
tripling in the prevalence of obesity since 1975 (ref.8) 
(fig. 1). Although the rate of increase in obesity seems to 
be declining in most high- income countries, it continues 
to rise in many low- income and middle- income countries  
and prevalence remains high globally8. If current trends 
continue, it is expected that 1 billion adults (nearly 20% 
of the world population) will have obesity by 2025. 
Particularly alarming is the global rise in obesity among 
children and adolescents; more than 7% had obesity in 
2016 compared with less than 1% in 1975 (ref.8).

Although changes in the environment have undoubt-
edly driven the rapid increase in prevalence, obesity 
results from an interaction between environmental and 
innate biological factors. Crucially, there is a strong 
genetic component underlying the large interindivid-
ual variation in body weight that determines people’s 
response to this ‘obesogenic’ environment. Twin, family 

and adoption studies have estimated the heritability 
of obesity to be between 40% and 70%9,10. As a conse-
quence, genetic approaches can be leveraged to charac-
terize the underlying physiological and molecular 
mechanisms that control body weight.

Classically, we have considered obesity in two broad 
categories (fig. 2): so- called monogenic obesity, which 
is inherited in a Mendelian pattern, is typically rare, 
early- onset and severe and involves either small or 
large chromosomal deletions or single- gene defects; 
and polygenic obesity (also known as common obesity), 
which is the result of hundreds of polymorphisms that 
each have a small effect. Polygenic obesity follows a 
pattern of heritability that is similar to other complex 
traits and diseases. Although often considered to be two 
distinct forms, gene discovery studies of monogenic and 
polygenic obesity have converged on what seems to be 
broadly similar underlying biology. Specifically, the cen-
tral nervous system (CNS) and neuronal pathways that 
control the hedonic aspects of food intake have emerged 
as the major drivers of body weight for both monogenic 
and polygenic obesity. Furthermore, early evidence 
shows that the expression of mutations causing mono-
genic obesity may — at least in part — be influenced 
by the individual’s polygenic susceptibility to obesity11.

In this Review, we summarize more than 20 years of 
genetic studies that have characterized the molecules 
and mechanisms that control body weight, specifically 
focusing on overall obesity and adiposity, rather than fat 
distribution or central adiposity. Although most of the 
current insights into the underlying biology have been 
derived from monogenic forms of obesity, recent years 
have witnessed several successful variant- to- function 
translations for polygenic forms of obesity. We also 
explore how the ubiquity of whole- exome sequencing 
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(WES) and genome sequencing has begun to blur the 
line that used to demarcate the monogenic causes of 
obesity from common polygenic obesity. Syndromic 
forms of obesity, such as Bardet–Biedl, Prader–Willi, 
among many others12, are not reviewed here. Although 
obesity is often a dominant feature of these syndromes, 
the underlying genetic defects are often chromosomal 
abnormalities and typically encompass multiple genes, 
making it difficult to decipher the precise mechanisms 
directly related to body- weight regulation. Finally, as we 
enter the post- genomic era, we consider the prospects 
of genotype- informed treatments and the possibility of 
leveraging genetics to predict and hence prevent obesity.

Gene discovery approaches
The approaches used to identify genes linked to obesity 
depend on the form of obesity and genotyping technol-
ogy available at the time. Early gene discovery studies 
for monogenic forms of obesity had a case- focused 
design: patients with severe obesity, together with their 
affected and unaffected family members, were exam-
ined for potential gene- disrupting causal mutations 
via Sanger sequencing. By contrast, genetic variation 
associated with common forms of obesity have been 
identified in large- scale population studies, either using 

a case–control design or continuous traits such as BMI. 
Gene discovery for both forms of obesity was initially 
hypothesis driven; that is, restricted to a set of candidate 
genes that evidence suggests have a role in body- weight 
regulation. Over the past two decades, however, 
advances in high- throughput genome- wide genotyping 
and sequencing technologies, combined with a detailed 
knowledge of the human genetic architecture, have 
enabled the interrogation of genetic variants across the 
whole genome for their role in body- weight regulation 
using a hypothesis- generating approach.

Gene discovery for monogenic obesity. Many of the 
candidate genes and pathways linked to body- weight 
regulation were initially identified in mice, such as the 
obese (ob)13 and diabetes (db)14 mouse lines, in which 
severe hyperphagia and obesity spontaneously emerged. 
Using reverse genetics, the ob gene was shown to encode 
leptin, a hormone produced from fat, and it was demon-
strated that leptin deficiency resulting from a mutation 
in the ob gene caused the severe obesity seen in the ob/ob  
mouse15 (fig. 3). Shortly after the cloning of ob, the db gene 
was cloned and identified as encoding the leptin receptor 
(LEPR)16. Reverse genetics was also used to reveal that 
the complex obesity phenotype of Agouti ‘lethal yellow’ 
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Fig. 1 | Prevalence of obesity in males and females according to age and geographical region. The prevalence of obesity 
has risen steadily over the past four decades in children, adolescents (not shown) and adults worldwide. a | Prevalence of 
obesity (body mass index (BMI) ≥30 kg m−2) in women and men ≥20 years of age, from 1975 to 2016. b | Prevalence of obesity 
(weight ≥2 s.d. above the median of the WHO growth reference) in 5- year- old girls and boys from 1975 to 2016. Geographical 
regions are represented by different colours. Graphs are reproduced from the NCD Risk Factor Collaboration (NCD RisC) 
website and are generated from data published in ref.8.
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mice is caused by a rearrangement in the promoter 
sequence of the agouti gene that results in ectopic and 
constitutive expression of the agouti peptide17,18, which 
antagonizes the melanocortin 1 and 4 receptors (MC1R 
and MC4R)19,20. This finding linked the melanocortin 
pathway to body- weight regulation, thereby unveiling a 
whole raft of new candidate genes for obesity.

Once the genes for leptin and its receptor were identi-
fied, they became candidate genes for human obesity, 
and in 1997 the first humans with congenital leptin 
deficiency were identified21. This discovery was rapidly 
followed by the report of humans with mutations in the 
gene encoding the leptin receptor (LEPR)22, as well as 
in genes encoding multiple components of the melano-
cortin pathway, including PCSK1 (ref.23), MC4R24–26 and 
POMC27–29, all of which were found to result in severe 
early- onset obesity (TAble 1).

Advances in high- throughput DNA sequencing led 
to candidate gene screening being replaced by WES, an 
unbiased approach that allows all coding sequences to 
be screened for mutations. However, it rapidly became 
clear that, whereas candidate gene studies yielded 
few mutations, WES identified too many potential 
obesity- associated variants such that the noise often 
masked the true causative mutations. However, with 
improved algorithms to predict the pathogenicity 
of mutations, as well as a rapidly expanding toolkit of 
functional assays, it has become easier to filter the likely 
pathogenic mutations. Several success stories have been 
reported in which WES has identified novel pathways 
and genes linked to obesity, such as the class 3 sema-
phorins (SEMA3A–G), which have been shown to 
direct the development of certain hypothalamic neu-
rons, including those expressing pro- opiomelanocortin 
(POMC)30 (see ‘Other neuronal circuits and molecules 
linked to severe obesity’).

Most monogenic obesity mutations have been identi-
fied in cohorts of patients with severe and early- onset 
(<10 years old) obesity. Additionally, as monogenic obe-
sity often demonstrates a recessive inheritance pattern31, 
consanguinity in populations has further increased 
the chance of identifying mutations, owing to greater 
chances of homozygosity of deleterious mutations32. 
For example, studies have reported that mutations in the 
genes encoding leptin, LEPR and MC4R explain 30% of 

cases of severe obesity in children from a consanguine-
ous Pakistani population33, and single- gene defects more 
broadly account for nearly 50%34.

Gene discovery for polygenic obesity. The discovery of 
genes that influence polygenic obesity, which is com-
mon in the general population, started off slowly with 
candidate gene studies and genome- wide linkage studies. 
The candidate gene approach was first applied in the 
mid-1990s and aimed to validate genes identified 
through human and animal models of extreme obesity 
for a role in common obesity (fig. 3). Common variants 
in such candidate genes were tested for association with 
obesity risk, BMI or other body composition traits. 
Over the subsequent 15 years, hundreds of genes were 
studied as candidates, but variants in only six (ADRB3 
(ref.35), BDNF36, CNR1 (ref.37), MC4R38, PCSK1 (ref.39) and 
PPARG40) showed reproducible association with obesity 
outcomes. The genome- wide linkage approach made 
its entrance into the field towards the end of the 1990s 
(fig. 3). Genome- wide linkage studies rely on the related-
ness of individuals and test whether certain chromo-
somal regions co- segregate with a disease or trait across 
generations. Even though more than 80 genome- wide 
linkage studies identified >300 chromosomal loci with 
suggestive evidence of linkage with obesity traits, few loci 
were replicated and none was successfully fine- mapped 
to pinpoint the causal gene or genes41. Ultimately, candi-
date gene and genome- wide linkage studies, constrained 
by small sample sizes, sparse coverage of genetic varia-
tion across the genome and lack of replication, only had 
a marginal impact on the progression of gene discovery 
for common obesity outcomes.

However, the pace of gene discovery for com-
mon diseases accelerated with the advent of genome- 
wide association studies (GWAS) (fig. 3). The first GWAS 
for obesity traits were published in 2007 and identi-
fied a cluster of common variants in the first intron of 
the FTO locus that was convincingly associated with 
BMI42,43. Many more GWAS followed and, to date, 
nearly 60 GWAS have identified more than 1,100 inde-
pendent loci associated with a range of obesity traits44 
(Supplementary Tables 1,2).

As sample sizes increase with each consecutive 
GWAS, the statistical power to identify more loci also 
increases, in particular for loci that are less common 
and/or have smaller effects. For example, the first GWAS 
were relatively small (n = ~5,000) and identified only 
the FTO locus42,43. The BMI- increasing allele of FTO 
is common, particularly in populations of European 
ancestry (minor allele frequency (MAF) 40–45%), and 
has a relatively large effect on BMI (0.35 kg m−2 per allele; 
equivalent to 1 kg for a person who is 1.7 m tall). Ten 
years and numerous GWAS later, the most recent GWAS 
for BMI included nearly 800,000 individuals, identified 
more than 750 loci, with MAFs as small as 1.6% and 
per- allele effects as low as 0.04 kg m−2 per allele (equiva-
lent to 120 g for a person who is 1.7 m tall)45. Combined, 
these genome- wide significant loci explained 6% of var-
iation in BMI45. Large- scale international collaborations 
have been formed, such as the Genetic Investigation 
for Anthropometric Traits (GIANT) consortium, that  
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Fig. 2 | Key features of monogenic and polygenic forms of obesity.
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combine summary statistics of individual GWAS to 
generate data sets comprising hundreds of thousands of 
individuals. Furthermore, many GWAS efforts have max-
imized sample size by focusing on BMI as the primary 
obesity outcome, an inexpensive and easy- to- obtain 
measurement that is readily available in most stud-
ies. As such, the vast majority of loci have been iden-
tified first in GWAS of BMI, but their effects typically  
transfer to other overall adiposity outcomes.

Even though BMI is widely used, it is considered 
a crude proxy of overall adiposity because it does not 
distinguish between lean and fat mass46. Therefore, 
GWAS have been performed for more refined obesity 
traits, such as body fat percentage47,48, fat- free mass49, 
imaging- derived adipose tissue50, circulating leptin 

levels51 and LEPR levels52. In addition, two GWAS have 
focused on persistent healthy thinness, assuming 
that genes that determine resistance to weight gain 
may also inform obesity prevention and weight loss 
maintenance53,54. Although GWAS of more refined and 
alternative obesity outcomes are generally much smaller 
than those for BMI, the phenotypes are often a more 
accurate representation of body- weight regulation and, 
as such, the loci identified tend to more often point to 
relevant biological pathways that underlie obesity.

Almost all GWAS loci for obesity outcomes were 
first identified in adults. Most of these loci also associ-
ate with obesity and/or BMI in children and adolescents, 
highlighting the fact that the genetic underpinning of 
obesity is relatively constant across the course of life55–57. 
Similarly to gene discovery for other common diseases, 
the obesity genetics field has suffered from a strong 
bias in population representation, with the vast major-
ity of GWAS being performed in populations that are 
exclusively or predominantly of European ancestry. 
Nevertheless, some loci have first been discovered in 
populations of Asian58, African59,60, Hispanic or other 
ancestry61, despite their much smaller sample sizes. 
Broadly, loci identified in one ancestry demonstrate 
good transferability (that is, directionally consistent 
associations) across other ancestries, even though 
effect sizes and allele frequencies may differ. The 
modest- to- high genetic correlations across ancestries 
observed for BMI (r = 0.78) are consistent with good 
transferability62, but also suggest that ancestry- specific 
loci remain to be discovered. Besides increasing the 
sample sizes of GWAS in populations of non- European 
ancestry, demographic, evolutionary and/or genomic 
features of specific populations (such as founder, con-
sanguineous or isolated populations) have been lever-
aged for gene discovery, identifying genetic variants with 
large effects that are common in the discovery popula-
tion, such as CREBRF, first identified in Samoan popu-
lations, and ADCY3, first identified in the Greenlandic 
population, but rare or nonexistent in most others63–66. 
CREBRF has been shown to play a role in cellular energy 
storage and use, and may be implicated in cellular and 
organismal adaptation to nutritional stress65. ADCY3 
colocalizes with MC4R at the primary cilia of a subset 
of hypothalamic neurons that have been implicated in 
body- weight regulation67.

GWAS have typically focused on biallelic, common 
genetic variation (MAF >5%), but have also been used 
to screen for the role of copy number variants (CNVs) 
in obesity. So far, only a few CNVs have been identi-
fied that have a convincing association with BMI, 
such as the 1p31.1 45- kb deletion near NEGR1 (ref.68), 
which encodes a cell- adhesion molecule expressed in 
the brain69; the 16p12.3 21- kb deletion upstream of 
GPRC5B70, which may modulate insulin secretion71; 
the 10q11.22 CNV in PPYR1 (also known as NPY4R)72, 
which encodes a potent anti- obesity agent known to 
inhibit food intake73; and the 1p21.1 multi- allele CNV 
encompassing AMY1A74, which produces salivary 
α- amylase, a key enzyme in starch digestion75.

To determine the role of other types of variation 
in obesity, alternative genome- wide screens have been 
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Table 1 | Overview of all genes implicated in severe and early- onset obesity

Gene symbol, name, 
Gene ID

Location (human, GRCh38/
hg38) chr: start…end 
position

Species in 
which naturally 
occurring 
mutations cause 
obesity

Tissue expression Nearby 
GWAS- 
identified 
locus (index 
SNP)

Role in body- weight 
regulation

ADCY3, adenylate 
cyclase, Gene ID: 109

2: 24,819,168…24,920,236 Humans Primary cilia of cells rs6545814 Disruption of primary cilia in 
neurons known to influence 
energy balance67; some 
evidence of a specific link to the 
correct function of MC4R67,156

AGRP, agouti- related 
protein, Gene ID: 181

16: 67 ,482,571…67 ,483,547 – Neurons in the 
arcuate nucleus of 
the hypothalamus

– Endogenous antagonist  
of MC4R, to which it binds  
to increase food intake92,94

BDNF, brain- derived 
neurotrophic factor, 
Gene ID: 627

11: 27 ,654,893…27 ,722,030 Humans Brain rs925946 Probably via its role in 
regulating neuronal synaptic 
plasticity111,115

KSR2, kinase 
suppressor of Ras2, 
Gene ID: 283455

12: 117 ,453,012…117 ,968,990 Humans Wide expression 
throughout the 
body

rs56214831 Influences both energy intake 
and expenditure, possibly via 
interaction with AMPK168

LEP, leptin, Gene ID: 
3952

7: 128,241,201…128,257 ,629 Humans and mice Fat rs10487505 Circulates in proportion to 
fat mass21,90, and turns on the 
neuroendocrine starvation 
response when circulating 
levels drop below a minimum 
threshold91

LEPR, leptin receptor, 
Gene ID: 3953

1: 65,420,652…65,641,559 Humans and mice The long ‘signalling’ 
form is expressed 
widely in the brain

rs11208659 Cognate receptor for leptin, 
mediating its downstream 
neuroendocrine functions16,22

MC4R, melanocortin 
4 receptor, Gene ID: 
4160

18: 60,371,062…60,372,775 Humans, pigs and 
blind Mexican 
cavefish

Central nervous 
system

rs17782313 Binds melanocortin peptides 
and AGRP to mediate 
appetitive behaviour92  
and autonomic output169

MRAP2, melanocortin 
receptor accessory 
protein 2, Gene ID: 
112609

6: 84,032,621…84,146,278 Humans Wide expression 
throughout the 
body, but highest  
in the brain

– An accessory protein that plays 
a role in trafficking MC4R to the 
cell surface99

NTRK2, neurotrophic 
receptor tyrosine 
kinase 2, Gene ID: 
4915

9: 84,668,458…85,027 ,070 Humans Brain rs10868215 Cognate receptor for BDNF, 
mediating its downstream 
effects on synaptic plasticity116

PCSK1, proprotein 
convertase subtilisin/
kexin type 1, Gene ID: 
5122

5: 96,390,333…96,433,248 Humans Endocrine organs, 
with highest 
expression in  
the brain

rs6235 Encodes one of the 
prohormone convertases 
required for processing POMC93

PHIP, pleckstrin 
homology domain 
interacting protein, 
Gene ID: 55023

6: 78,934,419…79,078,294 Humans Widely expressed – Regulates transcription  
of POMC98

POMC, 
pro- opiomelanocortin, 
Gene ID: 5443

2: 25,160,860…25,168,580 Humans and 
Labrador retriever 
dogs

Hypothalamus, 
nucleus tractus 
solitaris, pituitary, 
skin, adrenal glands 
and numerous 
other tissues

rs6545975 Complex pro- polypeptide that 
is processed into melanocortin 
peptides that signal to MC4R  
in the brain27,93

SH2B1, SH2B  
adaptor protein 1 
Gene ID: 25970

16: 28,846,606…28,874,205 Humans Widely expressed rs7498665 A signalling molecule 
downstream of the leptin 
receptor97

SIM1, SIM bHLH 
transcription factor 1, 
Gene ID: 6492

6: 100,385,009…100,464,929 Humans Hypothalamus, 
kidney and fat

rs6907240 A transcription factor crucial 
for the proper development  
of the paraventricular nucleus 
and hence appropriate 
expression of MC4R, among 
other genes100

AMPK, AMPK- activated kinase; bHLH. basic helix–loop–helix; GWAS, genome- wide association study.
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performed. For example, the impact of low- frequency 
and rare protein- coding variants has been tested using 
exome sequencing and exome array data76–79. It was spec-
ulated that low- frequency (MAF 1–5%) and rare (MAF 
<1%) variants would have larger effects than common 
variants, and thus be easier to detect. Nevertheless, even 
large- scale studies identified only a few robust associa-
tions for rare coding variants. For example, exome- wide 
screening based on array data from more than 400,000 
individuals identified p.Tyr35Ter (rs13447324) in 
MC4R; p.Arg190Gln (rs139215588) and p.Glu288Gly 
(rs143430880) in GIPR, which stimulates insulin 
secretion and mediates fat deposition80; p.Arg95Ter 
(rs114285050) in GRP151, which modulates habenu-
lar function that controls addiction vulnerability81; 
and p.Arg769Ter (rs533623778) in PKHD1L1, 
which has been involved in cancer development77,78.  
A recent study that leveraged WES data for more than 
600,000 individuals identified 16 genes for which the 
burden of rare nonsynonymous variants was associated 
with BMI, including five brain- expressed G protein-  
coupled receptors (CALCR, MC4R, GIPR, GPR151  
and GPR75)79.

As obesity is a complex, multifactorial condition, 
some GWAS have integrated demographic factors 
(such as sex and age82) and environmental factors (such 
as physical activity83, diet84 or smoking85) into their 
analyses. Despite sample sizes of more than 200,000 
individuals, these genome- wide gene- by- environment 
(G×E) interaction analyses remain challenging and so 
far only 12 loci have been identified, the effects of which 
on obesity are attenuated or exacerbated by non- genetic 
factors. Nevertheless, the G×E interaction between the 
FTO locus and a healthy lifestyle has been robustly 
replicated. Specifically, increased physical activity or a 
healthy diet can attenuate the effect of the FTO locus on 
obesity risk by 30–40%86,87.

The increasing availability of large- scale cohorts and 
biobanks, such as the UK Biobank, the Million Veterans 
Project, All of Us, Biobank Japan and 23andMe, com-
bined with ongoing work by the GIANT consortium, 
will boost sample sizes further to easily exceed 4 million 
participants in meta- analyses, expediting the discovery 
of many more obesity- associated loci. However, transla-
tion of GWAS- identified loci into new biological insights 
remains a major challenge.

From genes to biology
Despite the difficulties in validating causative mutations 
and variants, genetic studies into both rare and common 
obesity over the past two decades have revealed two sur-
prisingly cogent, overarching biological messages: first, 
the leptin–melanocortin pathway is a key appetitive con-
trol circuit31,88 (fig. 4); and second, genes that are either 
enriched or exclusively expressed within the brain and 
CNS have a central role in obesity89.

The leptin–melanocortin pathway and MC4R. Leptin 
is a key hormone secreted by adipocytes, which circu-
lates at levels in proportion to fat mass90. Leptin also 
responds to acute changes in energy state, as its levels 
decrease with food deprivation and are restored during 

re- feeding. Administration of leptin to fasted mice 
abrogates many of the neuroendocrine consequences of 
starvation, suggesting that the normal biological role 
of leptin is to initiate the starvation response91. Leptin 
signals through the LEPR, which exists in several dif-
ferent isoforms. However, obesity- related effects of 
leptin are predominantly mediated by a long isoform 
that contains an intracellular domain (LEPRb), which is 
expressed in various regions of the CNS90.

Within the arcuate nucleus (ARC) of the hypothal-
amus, LEPRb is found on two populations of neurons 
at the heart of the melanocortin pathway, one of which 
expresses POMC and the other agouti- related protein 
(AGRP)92 (fig. 4). POMC is post- translationally pro-
cessed by prohormone convertases to produce several 
biologically active moieties, including β- lipotrophin 
and β- endorphin, and, crucially, the melanocortin 
peptides adrenocorticotrophin (ACTH) and α-, β- and 
γ- melanocyte- stimulating hormone (MSH)93. The ARC 
POMC neurons project to MC4R neurons within the 
paraventricular nucleus (PVN) where melanocortin 
peptides signal to decrease food intake92. By contrast, 
AGRP acts as an endogenous antagonist of MC4R to 
increase food intake92,94. MC3R is another centrally 
expressed receptor that binds to both melanocortin pep-
tides and AGRP; however, as mice with targeted dele-
tions in the gene are not obese but instead have altered 
fat to lean mass ratio, MC3R is less likely to be related 
to food intake and more likely to be involved in nutrient 
partitioning95,96.

We can state with confidence that the fine balance of  
melanocortinergic agonism and AGRP antagonism  
of MC4R, in response to peripheral nutritional cues such 
as leptin, plays a central part in influencing appetitive 
drive92. The genetic evidence clearly supports this con-
tention, with mutations in most genes of the melanocor-
tin pathway resulting in hyperphagia and severe obesity 
in both humans and mice31,88. In fact, the vast majority of 
single- gene disruptions causing severe early- onset obe-
sity in humans fall within this pathway, including LEPR, 
POMC, AGRP, MCR4R, PCSK1 (ref.23), SH2B1 (ref.97), 
PHIP98, MRAP2 (ref.99) and SIM1 (ref.100) (fig. 4; TAble 1). 
Mutations in MC4R in particular, are the most common 
single- gene defect leading to hyperphagia and obesity. 
Pathogenic mutations in MC4R are found in up to 5% of 
cases of severe childhood obesity101 and up to 0.3% of the 
general population101,102. Of note, the degree of receptor 
dysfunction, as measured by in vitro assays, can predict 
the amount of food eaten at a test meal by an individual 
harbouring that particular mutation101. Thus MC4R does 
not act in a binary on/off manner, but as a rheostat; put 
simply, the melanocortin pathway is a ‘tunable’ system. 
In addition to regulating food intake, it also regulates 
food preference, with individuals who carry mutations 
in MC4R showing a preference for food with higher fat 
content103.

The importance of the melanocortin pathway in 
regulating feeding behaviour is highlighted by the 
identification of naturally occurring mutations in 
pathway genes in a wide range of different species 
where the appropriate selection pressure has been 
present (TAble 1). For example, studies have found that 
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20–25% of Labrador retrievers, which are known to be 
more food- motivated than other dog breeds, carry a 
14- bp deletion in POMC that disrupts the β- MSH and 
β- endorphin coding sequences and is associated with 
greater food motivation and increased body weight104. 
Also, certain breeds of pig have been shown to carry 
MC4R missense mutations that are associated with fat-
ness, growth and food intake traits105. MC4R mutations 
even contribute to the adaptation and survival of blind 
Mexican cavefish to the nutrient- poor conditions of their  
ecosystem106.

Other neuronal circuits and molecules linked to severe 
obesity. It is now clear that in addition to engaging classi-
cal neuropeptide–receptor systems within the brain, lep-
tin also rapidly modifies synaptic connections between 
neurons107, and that this structural plasticity is crucial to 
its downstream functions. One of the ways in which this 
plasticity is thought to be achieved is via brain- derived 
neurotrophic factor (BDNF) signalling to its receptor 
TrkB. BDNF is widely expressed in the CNS where it 
plays an important part in neuronal development108,109. 
In the hippocampus, BDNF contributes to synaptic 
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Fig. 4 | The leptin–melanocortin pathway. Pro- opiomelanocortin (POMC)- expressing neurons and agouti- related 
protein (AGRP)- expressing neurons within the arcuate nucleus of the hypothalamus (ARC) act to sense circulating leptin 
(LEP) levels, which reflect fat mass. These neurons signal to melanocortin 4 receptor (MC4R)- expressing neurons in the 
paraventricular nucleus of the hypothalamus (PVN), which controls appetite, thus linking long- term energy stores to 
feeding behaviour. Binding of class 3 semaphorins (SEMA3) to their receptors NRP and PLXNA influences the projection  
of POMC neurons to the PVN. Binding of brain- derived neurotrophic factor (BDNF) to its receptor neurotrophic receptor 
tyrosine kinase 2 (NTRK2) is thought to be an effector of leptin- mediated synaptic plasticity of neurons, including those in 
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plasticity and long- term potentiation associated with 
memory and learning110. However, evidence has emerged 
that implicates BDNF and TrkB in the regulation of 
mammalian eating behaviour and energy balance111. 
BDNF is downregulated by nutritional deprivation and 
upregulated by leptin within the ventromedial nucleus 
(VMN) of the hypothalamus112, although this regulation 
is probably indirect, as very few VMN BDNF neurons 
express the LEPR113 (fig. 4) and some evidence indicates 
that it acts at least in part downstream of melanocortin 
signalling112. Crucially, genetic disruption of BDNF114,115 
and TrkB112,116 in both humans and mice results in 
hyperphagia and severe obesity.

Another group of neuronal proteins important in the 
development of neuronal circuitry and linked to energy 
balance are the class 3 semaphorins (SEMA3A–G).  
A study in humans found that 40 rare loss- of- function 
variants in SEMA3A–G and their receptors (PLXNA1–4, 
NRP1 and NRP2) were significantly enriched in 982 
individuals with severe obesity compared with 4,449 
controls30. Disruption of several of these genes in zebraf-
ish caused increased somatic growth and/or adiposity, 
and experiments with mouse hypothalamic explants 
suggest that SEMA3 signalling via NRP2 receptors drives 
the development of POMC projections from the ARC  
to the PVN30. However, given that these results are from 
a single study, more data are required to confirm the 
exact role of class 3 semaphorins in energy homeostasis.

Insights from genetic loci linked to common obesity. 
Unlike candidate gene studies, GWAS make no a pri-
ori assumptions about the underlying biology that links 
genetic variants to a disease of interest. While this agnos-
tic approach allows for new biological insights, the vast 

majority of GWAS- identified variants map to the non- 
coding parts of genes or to regions between genes. As 
such, they do not directly disrupt the protein- coding 
regions, but instead overlap with regulatory elements 
that influence expression of genes in close proximity or 
even over long distances.

However, even if the causative genes are unknown, 
pathway, tissue and functional enrichment analyses 
based on the genes located in the GWAS loci can pro-
vide insights into potential mechanisms. Since the very 
first GWAS for BMI68,117, such analyses have pointed 
to the CNS being a key player in body- weight regula-
tion, consistent with insights from human and animal 
models of extreme obesity. Recent analyses that include 
the latest BMI- associated loci, combined with updated 
multi- omics databases and advanced computational 
tools, have further refined these observations. In addi-
tion to the hypothalamus and pituitary gland (which are 
both known appetite regulation sites), other brain areas 
have been highlighted, including the hippocampus and 
the limbic system (which are involved in learning, cogni-
tion and emotion) and the insula and the substantia nigra 
(which are related to addiction and reward)58,89,118,119. The 
enrichment of immune- related cells (such as lympho-
cytes and B cells) and adipose tissue was found to be 
weaker58.

Although enrichment analyses provide preliminary 
insights into the broad biology represented by genes 
in the GWAS loci, determining which genes, variants 
and/or underlying mechanisms are causal has proved 
an arduous task. For example, the FTO locus, which 
was identified more than a decade ago and harbours  
six genes, is the most extensively studied GWAS-  
identified obesity locus (fig.  5). Despite its highly 
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Fig. 5 | Schematic representation of the FTO locus and its neighbouring genes on human chromosome 16q22. FTO 
contains nine exons (depicted by blue rectangles) and the body mass index (BMI)- associated SNP identified in genome- 
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causal genes for obesity within the locus and to act on body weight through distinct mechanisms. HFD, high- fat diet.
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significant and widely replicated association with 
obesity120, the causal variants and/or genes in the FTO 
locus have not yet been pinpointed with convincing evi-
dence, and the mechanisms by which the locus affects 
body weight have not been fully elucidated. Early func-
tional follow- up analyses suggested that FTO itself 
might be responsible, as Fto deficiency in mice results 
in a lean phenotype, whereas Fto overexpression is asso-
ciated with increased body weight121,122. Studies in mice 
have suggested that FTO plays a role in cellular nutrient 
sensing123,124. Other studies found evidence that FTO 
influences brain regions that affect appetite, reward pro-
cessing and incentive motivation by regulating ghrelin 
levels in humans125 or by controlling dopaminergic signal-
ling in mice126,127. In addition, variants in the FTO locus 
were shown to alter a regulatory element that controls the 
transcription of Rpgrip1l in mice, a ciliary gene located 
immediately upstream of Fto128–130. Mice with reduced 
Rpgrip1l activity exhibit hyperphagic obesity, possibly 
mediated through diminished leptin signalling128–130. In 
recent years, studies in human and animal models have 
shown that variants in the FTO locus directly interact 
with the promoter of Irx3, a gene located 0.5 Mb down-
stream of FTO. Irx3- deficient mice were found to exhibit 
weight loss and increased metabolic rate with browning of 
white adipose tissue, without changes in physical activity 
or appetite131,132. Further in- depth functional characteri-
zation showed that rs1421085 in the FTO locus disrupts a 
conserved binding motif for the transcriptional repressor 
ARID5B, which leads to a doubling of IRX3 and IRX5 
expression during early adipocyte differentiation132. The 
authors argue that increased expression of these genes 
results in a developmental shift from energy- dissipating 
beige adipocytes to energy- storing white adipocytes,  
a fivefold reduction in mitochondrial thermogenesis and 
increased lipid storage132. However, given that multi ple 
studies have shown that the FTO locus is robustly asso-
ciated with food intake, with no evidence to date linking 
it to changes in energy expenditure, the relevance of this 
observation to the actual observed human phenotype 
still needs to be explored133. A recent study reports that 
the FTO locus affects gene expression in multiple tissues, 
including adipose tissue and brain, and, more broadly, 
that the genetic architecture of disease- associated loci 
may involve extensive pleiotropy and allelic heterogeneity 
across tissues134.

Besides the FTO locus, functional follow- up analyses 
have been performed for only a few obesity- associated 
GWAS loci. For example, early studies identified a clus-
ter of variants just downstream of TMEM18 (refs68,117). 
TMEM18 encodes a poorly characterized transmembrane 
protein that is highly conserved across species and widely 
expressed across tissues, including in several regions 
of the brain135,136. Tmem18 deficiency in mice results  
in a higher body weight owing to increased food intake, 
whereas Tmem18 overexpression reduces food intake and  
limits weight gain136. A knockdown experiment in 
Drosophila melanogaster suggests that TMEM18 affects 
carbohydrate and lipid levels by disrupting insulin and 
glucagon signalling137.

Two other GWAS loci for which functional analy-
ses have been performed are located just upstream 

of CADM1 (ref.82) and in CADM2 (ref.70), genes that 
encode cell- adhesion proteins of the immunoglob-
ulin superfamily and mediate synaptic assembly in 
the CNS138. The BMI- increasing alleles at each locus 
are associated with increased expression of CADM1 
and CADM2 in the hypothalamus139,140. Deficiency of 
either Cadm1 or Cadm2 in mice results in a lower body 
weight and increased insulin sensitivity, glucose toler-
ance and energy expenditure without any change in food 
intake139,140. Conversely, increased neuronal expression 
of either Cadm1 or Cadm2 is associated with elevated 
body weight139,140. Furthermore, CADM1 is expressed 
in POMC neurons and Cadm1 deficiency leads to an 
increase in the number of excitatory synapses, suggestive 
of an increased synaptic plasticity140. Cadm2- deficient 
mice exhibit increased locomotor activity and higher 
core body temperature139.

Another GWAS locus, just upstream of NEGR1, 
harbours two deletions associated with increased 
obesity risk68,117,141. These deletions do not overlap with 
the coding sequence of NEGR1, but encompass a con-
served trans cription factor- binding site for NKX6.1,  
a potent transcriptional repressor68,141. Loss of binding 
of NKX6.1 leads to higher NEGR1 expression141, which 
is consistent with the observation that BMI- increasing 
alleles (that is, deletions) at this locus are associated 
with higher NEGR1 expression in the brain. Similar to 
CADM1 and CADM2, NEGR1 is a cell- adhesion mole-
cule of the immunoglobulin superfamily that is expressed 
in several regions of the brain and has been shown to 
have a role in brain connectivity69,142, a process believed 
to be important in obesity143. NEGR1 deficiency in mice 
was shown to result in lower body weight, mainly due 
to reduced lean mass, mediated by lower food intake144. 
However, two other functional studies, one in mice and 
one in rats, found that knockdown of Negr1 expression 
resulted in the opposite phenotype — increased body 
weight and food intake145,146. While NEGR1 deficiency in 
mice was found to impair core behaviours, so far, findings 
and proposed mechanisms are not fully aligned69,147–149.

Taken together, functional follow- up analyses for 
these loci are slowly expanding our understanding of the 
pathophysiology that drives weight gain. However, many 
more obesity- associated loci are waiting to be translated 
into new biological insights. A major hurdle in translating 
GWAS loci into plausible candidate genes and appro-
priate paradigms for functional research is the annota-
tion of the associated variants in a locus. Defining the 
regulatory function of the non- coding variants, identi-
fying their putative effector transcripts and determining 
their tissues of action remains an ongoing challenge. 
The advent of high- throughput genome- scale techno-
logies for mapping regulatory elements, combined with 
comprehensive multi- omics databases, advanced com-
putational tools and the latest genetic engineering and 
molecular phenotyping approaches, is poised to speed up  
the translation of GWAS loci into meaningful biology150.

Converging results from monogenic and polygenic forms 
of obesity. Gene discovery is often dichotomized by allele 
frequency and disease prevalence; that is, mutations are 
sought for monogenic forms of obesity and common 
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variants for polygenic obesity (fig. 2). However, it is 
increasingly recognized that monogenic and polygenic 
forms of obesity are not discrete entities. Instead, they 
lie on a spectrum and share — at least in part — the 
same biology. As GWAS have continued to discover 
more obesity- associated loci, an increasing number 
of these loci harbour genes that were first identified 
for extreme and early- onset obesity in humans or ani-
mal models, including MC4R151,152, BDNF117, SH2B1 
(refs68,117), POMC70, LEP51,153, LEPR52,154, NPY155, SIM1 
(ref.155), NTRK2 (ref.58), PCSK1 (ref.154) and KSR2 (ref.77). 
In fact, most of these genes encode components of the 
leptin–melanocortin and BDNF–TrkB signalling path-
ways (TAble 1). Thus, whereas genetic disruption of 
components of these pathways results in severe obesity, 
genetic variants in or near these same genes that have 
more subtle effects on their expression will influence 
where an individual might sit in the normal distribution 
of BMI.

Although most genes have been first identified for 
extreme forms of obesity, a locus harbouring ADCY3 
was first identified in GWAS for common obesity77, 
and ADCY3 was subsequently confirmed as having 
a role in extreme obesity63,64. ADCY3 encodes an ade-
nylate cyclase that catalyses the synthesis of cAMP, 
an important second messenger in signalling path-
ways. There is some evidence that ADCY3 (adenylate 
cyclase) colocalizes with MC4R at the primary cilia of 
PVN neurons67 and that cilia are required specifically 
on MC4R- expressing neurons for the control of energy 
homeostasis156. In mice, disruption of Adcy3 or Mc4r 
in the cilia of these neurons impairs melanocortin 
signalling, resulting in hyperphagia and obesity67.

As more GWAS loci are reported, we expect that 
findings across different lines of obesity research will 
continue to converge, providing accumulating evidence 
for new biology.

From genes to clinical care
Genetic insights from gene discovery efforts are increas-
ingly being used in the context of precision medicine in 
ways that directly affect health. Knowing a patient’s gen-
otype may enable a more precise diagnosis of the type of 
obesity, which in turn allows the prescription of person-
alized treatment or prevention strategies. Furthermore, 
knowing an individual’s genetic susceptibility to obesity 
early in life may help to more accurately predict those 
most at risk of gaining weight in the future.

Use of genotype information in treatment of obesity. 
When a disease is caused by a single mutation and the 
environmental contribution is limited, as is the case for 
some forms of extreme and early- onset obesity, a genetic 
test can be instrumental in correctly diagnosing patients. 
Although no standard genetic testing panel is currently 
available for extreme and early- onset obesity, some 
clinics, research centres and pharmaceutical companies 
sequence well- known candidate genes to identify the 
functional mutation that may be the cause of a patient’s 
excess body weight. Such a genetic diagnosis can lessen 
the feelings of guilt and blame for the patient, and alle-
viate social stigma and discrimination. Importantly,  

a genetic diagnosis can inform disease prognosis and, in 
some cases, it will determine treatment. To date, there 
are two treatments for obesity that are tailored to patient 
genotype.

The prototype of genotype- informed treatment for 
obesity is the administration of recombinant human lep-
tin in patients who are leptin- deficient owing to muta-
tions in the LEP gene157,158. Although congenital leptin 
deficiency is exceptionally rare (only 63 cases have been 
reported to date28), leptin replacement therapy has been 
remarkably beneficial for these patients by substantially 
reducing food intake, body weight and fat mass, and 
normalizing endocrine function157,158. It has literally 
transformed their lives.

The second genotype- informed treatment for obe-
sity is setmelanotide, a selective MC4R agonist that 
was recently approved by the FDA for rare monogenic 
obesity conditions including LEPR, PCSK1 and POMC 
deficiency159. Setmelanotide acts as a substitute for the 
absent MSH in patients with POMC deficiency owing 
to mutations in POMC or PCSK1, and in patients with 
LEPR deficiency owing to mutations in LEPR, which is 
essential for POMC function160–162. Daily subcutaneous 
injection of setmelanotide results in substantial weight 
loss and in reduction of hunger160–162. After a 1- year 
treatment with setmelanotide in phase III trials, patients 
with POMC deficiency lost on average 25.6% of their 
initial weight, with 80% of patients achieving at least a 
10% weight loss162. The adverse effects of setmelanotide 
treatment are minor, and include hyperpigmentation, 
nausea and/or vomiting, penile erection and injec-
tion site reactions. Weight loss in patients with LEPR 
deficiency was less pronounced; on average, they lost 
12.5% of their initial weight, with only 45% of patients 
achieving at least a 10% weight loss162. The difference 
in weight loss between the two patient groups may be 
because POMC deficiency directly affects the produc-
tion of MC4R ligands (α- MSH and β- MSH), whereas 
LEPR deficiency affects signalling upstream of POMC162. 
As such, setmelanotide may be able to completely 
restore MC4R signalling in POMC deficiency, but only 
partially in LEPR deficiency. Even though the average 
weight loss in POMC- deficient patients was twice that 
in LEPR- deficient patients, the reduction in hunger was 
substantially larger in LEPR- deficient patients (−43.7%) 
than in POMC- deficient patients (−27.1%)162. The rea-
sons for the discrepancy between weight loss and reduc-
tion in hunger remain to be studied in greater depth.  
It has been estimated that in the USA, >12,800 individ-
uals carry mutations in the melanocortin pathway for 
whom setmelanotide may be more effective for weight 
loss than any other treatment163. Although 12,800 carri-
ers represent only a fraction (0.004%) of the adult popu-
lation in the USA, and not all of these mutation carriers 
are overweight or obese, for the patients for whom set-
melanotide is effective, it may end a lifelong battle to 
lose weight163. In patients without genetic defects, neither 
setmelanotide nor leptin administration have, to date, 
demonstrated a substantial effect on weight loss164,165.

These two genotype- informed treatments show how 
insight into the underlying biological mechanisms can 
guide the development of molecules and medications 
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that restore impaired pathways, at least in monogenic 
forms of obesity caused by deficiency of one protein. 
Nevertheless, there remain substantial obstacles in the 
transition from conventional to precision medicine for 
monogenic obesity, which would require the adoption of 
systematic WES for individuals suspected to be carriers 
of deleterious mutations, and eventually even standard-
ized screening at birth. We are clearly a long way from 
such a scenario at present.

Use of genotype information in prediction of obesity. As 
more variants are being discovered for common obesity, 
there is a growing expectation that genetic information 
will soon be used to identify individuals at risk of obesity. 
Knowing a person’s genetic susceptibility would allow for 
a more accurate prediction of who is at risk of gaining 
weight and give an opportunity to intervene earlier to 
prevent obesity more effectively. Genetic susceptibility 
to complex disease, including obesity, is assessed using 
a polygenic score (PGS). PGSs to assess obesity suscepti-
bility are based on GWAS for BMI (PGSBMI), the latest of 
which includes data on more than 2 million variants and 
explains 8.4% of the variation in BMI166. The average BMI 
of individuals with a high PGSBMI (top decile) is 2.9 kg m−2 
(equivalent to 8 kg in body weight) higher and their odds 
of severe obesity (BMI ≥40 kg m−2) is 4.2- fold higher than 
those with a lower PGSBMI (lowest nine deciles)166.

Despite these strong associations with BMI and 
obesity, the predictive performance of the PGSBMI is 
weak, which is unsurprising given its limited explained 
variance. For example, using the same PGSBMI and 
data from the UK Biobank, we estimate that the 

area under the receiver operating characteristic curve 
(AUCROC) is only 0.64 to predict obesity. This means 
that the probability that an individual with obesity has a 
higher PGSBMI than an individual without obesity is 0.64. 
However, for a PGS to have clinical utility, the AUCROC 
needs to be much higher (>0.80). In addition, we calcu-
lated the extent to which a PGSBMI ≥90th percentile cor-
rectly classifies individuals with obesity (fig. 6). We found 
that such a predictive test (PGSBMI ≥90th percentile) has 
a positive predictive value of 0.43, meaning that of those 
who were predicted to develop obesity, only 43% actually 
developed obesity. Its sensitivity is 0.19, which means 
that of the individuals who developed obesity, only 19% 
had been correctly classified by the PGSBMI. Given that 
the current treatment options for obesity are low risk, 
or even generally beneficial, the high false- positive 
rate is less concerning than the low sensitivity, as some 
at- risk individuals may miss the opportunity for early 
prevention.

Thus, the current PGSBMI has a high rate of misclas-
sification and does not reliably predict who is at risk of 
developing obesity and who is not. The predictive abil-
ity of PGSs are expected to improve as GWAS increase 
in sample size and algorithms to calculate the scores 
become more refined. Nevertheless, given the impor-
tance of socio- demographic, lifestyle and clinical risk 
factors in the aetiology of obesity, it is unlikely that a 
PGSBMI will ever be able to accurately predict obesity on 
its own. Instead, effective prediction models will have 
to include genetic and non- genetic factors, including a 
broad spectrum of demographic, environmental, clinical 
and possibly molecular markers, as well.
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(Pgs). A measure used to 
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susceptibility to disease, 
calculated by summing the 
number of disease- increasing 
alleles, weighted by each 
variant’s effect size observed  
in a genome- wide association 
study.
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disease. The AUC ranges from 
0.50 (equal to tossing a coin) 
to 1.0 (perfect prediction).
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Fig. 6 | Predicting obesity using a polygenic score. The outcome is illus-
trated for a polygenic score (PGS) that assumes that individuals with a score 
in the highest decile (≥90th percentile (pct)) will develop obesity, has  
a positive predictive value of 0.4 and a sensitivity of 0.19. Of ten individuals 
with a high score classified by the PGS as ‘with obesity’, four will be classified 
correctly but the other six will be misclassified and will not develop obesity —  

a positive predictive value of 0.4. Likewise, 17 of the 90 individuals with a 
score <90th pct who are predicted to not develop obesity, will develop obe-
sity. Thus, only four of the 21 individuals who developed obesity were correc-
tly classified by the PGS — a sensitivity of 0.19. Misclassified individuals are  
indicated by the red boxes, individuals correctly classified as ‘with obesity’ 
are indicated by a blue box. Adapted with permission from ref.170, Elsevier.
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Conclusions and future perspectives
What initially began as two apparently distinct 
approaches, one studying rare Mendelian causes of 
extreme obesity, and the other exploring complex poly-
genic influences of population body- weight distribu-
tion, have eventually converged on the central role of 
the brain in regulating body weight. In particular, both 
approaches have highlighted the roles of the leptin– 
melanocortin pathway and TrkB–BDNF signalling. 
Perhaps it seems obvious now, but it was by no means 
certain that, just because genetic disruption of a pathway 
resulted in a severe phenotype, polymorphisms within 
that same pathway would produce a more subtle and 
nuanced result.

The GWAS approach is hypothesis- free, with the 
promise to reveal new genes that point to new biology 
and pathways. However, for the vast majority of the 
>1,000 GWAS- identified loci, we do not know which 
genes are causal, what cells, tissues and organs they act 
in to affect body weight, and we do not understand the 
underlying mechanisms. The translation from variant to 
function is a well- known challenge167, but with increas-
ing availability of new omics data, high- throughput 
technologies and advanced analytical approaches, 

there is an unprecedented opportunity to speed up the  
translation of hundreds of GWAS loci.

Sample size remains a major driver for gene discov-
ery. In an ongoing collaboration that combines data 
from more than 3 million individuals of diverse ances-
try from the GIANT consortium, the UK Biobank and 
23andMe, the number of BMI- associated GWAS loci 
is set to double. Also, a recent WES effort of more than 
640,000 individuals has demonstrated that rare mutations 
are discoverable when sample sizes are sufficiently large79. 
However, alternative study designs, a focus on more 
refined phenotypes or a focus on population subgroups 
(that is, more homogeneous groups of individuals with 
similar outcomes) could further add to gene discovery.

Translation of only a few dozen of the GWAS-  
identified loci could tremendously improve our insights 
into the biology of obesity and possibly reveal new 
therapeutic targets. It would also take us a little closer 
to the ‘holy grail’ — the ability to move away from a 
failed ‘one- size- fits- all’ strategy, and towards true preci-
sion medi cine for obesity, metabolic disease and other 
diet- related illnesses.
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